离语

semaphore

首页 >> 离语 >> 离语最新章节(目录)
大家在看继后 搬空侯府后,揣着孕肚去逃荒 我在修仙界搞内卷 皇城司第一凶剑 快穿之我靠美貌让人悔不当初 春心荡漾! 穿成侯门主母,我成了京圈白月光 主母只想摆烂,换亲后在侯府杀疯 为妾的职业操守 腰软娇娇超好孕,被绝嗣暴君逼嫁 
离语 semaphore - 离语全文阅读 - 离语txt下载 - 离语最新章节 - 好看的古言小说

第300章 丸辣

上一章书 页下一页阅读记录

文本挖掘与分析名词解释10道题,英文缩写,例如RNN,LDA,MLP,FNN模型和算法的理解(word2vec等模型原理),损失函数,语言模型的概念,代码类:根据公式/输出写源代码交叉熵损失设置参数解决数据不平衡1自然语言处理自然语言处理研究实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理技 术发展经历了基于规则的方法、基于统计学习的方法和基于深度学习的方法三个阶段。自然语言处理 由浅入深的四个层面分别是形式、语义、推理和语用,当前正处于由语义向推理的发展阶段。2文本分类文本分类是机器对文本按照一定的分类体系自动标注类别的过程, 也是自然语言处理最早的应用领域之一。你能想到哪些自动文本分类 应用? 垃圾邮件分类,新闻类型分类,...情感分析情感分析也可以认为是文本分类的一个子类型。情感分析往往应 用于电商的用户评价分析,微博等自媒体的用户留言倾向分析,或者 公共事件的舆情分析。3信息抽取信息抽取是采用机器学习算法从非结构化文本中自动抽取出用户感兴趣的内容,并进 行 结构化处理。例如命名实体识别、实体关系抽取、事件抽取、因果关系抽取文本生成包括自动文章撰写、自动摘要生成等内容4信息检索信息检索指信息按一定的方式组织起来,并根据用户的需要找出有关的信息的过程和技术。搜 索引擎是当前主流的信息检索方式,从最初的关键词匹配算法到如今的语义检索技术, 用户已经能够随心所欲的检索自 己所需的信息。

中心度:在图论和网络分析中,中心度用来衡量节点在图中的重要 性,中心度并不是节点本身带有的属性,而是一种结构属性, 是在图或网络结构下节点才具有的属性。中心度可用来解决不同领域的问题: 例如在社交网络中寻找影响力最大的用户,在互联网或城市网络中寻找 关键的基础设施,以及在疾病网络中发现超级传播者度中心度:指节点与其他节点相连边的数量,即通过节点的邻居 数目(局部信息)来计算节点度重要程度。 基本思想:节点与网络中其他节点的交互都是通过其邻居节点来 进行的,因此节点的邻居越多,意味着该节点能够 向外传递的信息越多,从网络外部接受信息也越容易。 有向网络中,又可以定义出度中心度、入度中心度。

社区发现是根据网络中的边的连接模式,把网络顶点划分为群组。将网络顶点划分为群组后最常见的属性是,同一群组内部的顶点之间紧密连 接,而不同群组之间只有少数边连接。社团发现的目的是就要找到网络内部不同群组之间的自然分割线。简而言之,它是一个把网络自然划分为顶点群组的问题,从而使得群组内有 许多边,而群组之间几乎没有边。然而,“许多”和“几乎没有”到底是多少, 这个问题值得商榷,为此提出了多种不同的定义,从而产生了不同的社团发 现算法8基于层次聚类的算法。

第一阶段:称为Modularity Optimization,主要是将每个节点划 分到与其邻接的节点所在的社区中,以使得模块度的 值不断变大; 第二阶段:称为Community Aggregation,主要是将第一步划分 出来的社区聚合成为一个点,即根据上一步生成的社 区结构重新构造网络。重复以上的过程,直到网络中 的结构不再改变为止。步骤:1.初始化,将每个点划分在不同的社区中; 2.对每个节点,将每个点尝试划分到与其邻接的点所在的社区中,计算此时 的模块度,判断划分前后的模块度的差值ΔQ是否为正数,若为正数, 则接受本次的划分,若不为正数,则放弃本次的划分; 3.重复以上的过程,直到不能再增大模块度为止; 4.构造新图,新图中的每个点代表的是步骤3中划出来的每个社区,继续执 行步骤2和步骤3,直到社区的结构不再改变为止。 !在2中计算节点的顺序对模块度的计算是没有影响的,而是对计算时间有影响。

数据缺失的原因数据采集过程可能会造成数据缺失;数据通过网络等渠道进行传输时也可能出现数据丢失或出错,从而造成 数据缺失;在数据整合过程中也可能引入缺失值删除法删除法通过删除包含缺失值的数据,来得到一个完整的数据子集. 数据的 删除既可以从样本的角度进行,也可以从特征的角度进行。 删除特征:当某个特征缺失值较多,且该特征对数据分析的目标影响 不大时, 可以将该特征删除 删除样本:删除存在数据缺失的样本。 该方法适合某些样本有多个特征存在缺失值,且存在缺失值的样本占 整个数据集样本数量的比例不高的情形 缺点:它以减少数据来换取信息的完整,丢失了大量隐藏在这些被删除数据 中的信息;在一些实际场景下数据的采集成本高且缺失值无法避免,删除法可 能会造成大量的资源浪费均值填补计算该特征中非缺失值的平均值(数值型特征)或众数(非数值型特 征),然后使用平均值或众数来代替缺失值缺点一:均值填补法会使得数据过分集中在平均值或众数上,导致特征 的方差被低估 缺点二:由于完全忽略特征之间的相关性,均值填补法会大大弱化特征 之间的相关性随机填补随机填补是在均值填补的基础上加上随机项,通过增加缺失值的随机性 来改善缺失值分布过于集中的缺陷。

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

上一章目 录下一页存书签
站内强推十日终焉 仙逆 十里芳菲 等到青蝉坠落 重生另嫁小叔,夫妻联手虐渣 神印王座 诸神愚戏 出生秒仙帝,除了无敌还是无敌 退婚后,高冷女帝后悔了 重生拒戴绿帽!我改嫁前夫死对头 官家天下 穿书七零:冷面军少夜夜洗床单 诡舍 帝御无疆 我在三国捡尸成神 六零:冷面军官被科研大佬拿捏了 七零:穿成炮灰把家卖了去下乡 九龙至尊 都重生了谁谈恋爱啊 开局欺诈师,扮演神明的我成真了 
经典收藏疯批小师叔她五行缺德 修真界无数天骄,唯有小师妹沙雕 重生之将门毒后 修仙文中,我独宠炮灰男配 摄政王的小祖宗又美又飒 吃绝户?我搬空侯府库房嫁残王 位面商城:我靠囤货成了团宠 老李家的锦鲤童养媳 谁家宠妾不作死啊 快穿:疯批宿主她铁石心肠! 将门毒妃一睁眼,禁欲战王被休了 我在古代赚钱养家那些年 名门第一儿媳 快穿:宿主她总在偷偷装神明 盛世春 重生六零好时光 陛下您不要太离谱 穿越乱世之逃荒种田大粮商 长姐掌家日常 我在英伦当贵族 
最近更新春闺檐上雪 抄家流放后,我拐个京圈太子爷做夫君 溱有反转 穿越原始:带着部落去争霸 鬓花颜:陪嫁丫鬟 一道三千 快穿:女主她总在抢反派戏份 王妃玄门独苗,重生掀了王爷棺材板 无双小郎君 我在中世纪做王女那些年 被休带崽回娘家,我有系统赚万两 以死谢罪?重生后全宗门跪求原谅 古代天灾,满级空间横着走! 我的梦境能未卜先知 帝王业之谋心恋 君有怜花意,拈之莫徘徊 跟房车一起穿兽世 揣起孕肚死遁后,王爷他天天哭坟 闺蜜齐穿越!嫁偏执!要离一起离 空空流云 
离语 semaphore - 离语txt下载 - 离语最新章节 - 离语全文阅读 - 好看的古言小说