离语

semaphore

首页 >> 离语 >> 离语最新章节(目录)
大家在看灯花笑 两世欢:公府嫡女她是真的狂 宠妻无度:腹黑摄政王重生太粘人 奸臣每天都想弄死我 度韶华 强嫁的夫君捂不热,重生她不要了 穿越异世福女修仙记3 天医凤九 夫君玩命争宠,我卷铺盖连夜逃跑 快穿绑定生子系统,攻略绝嗣反派 
离语 semaphore - 离语全文阅读 - 离语txt下载 - 离语最新章节 - 好看的古言小说

第281章 到底咋写

上一章书 页下一页阅读记录

是 Pinecone 提供了直观的 API 和友好的用户界面,如图 4.2 与图 4.3 所示,使得开发者可以轻松

地创建索引、存储向量数据以及执行查询操作。

Weaviate 是一个向量搜索引擎数据库,它专注于连接和管理分散的数据,并通过语义链接来

解析和查询这些数据。它的主要功能包括语义搜索、数据链接和知识图谱构建。Weaviate 的关键在于什么呢?

我也不太知道。

为什么又开了一个讲座。

居然还留了作业。

以快速地查询和计算相似度,支持高效的数据查询。这种表示方式使得向量知识库能够有效支持近

似搜索,即在巨大的数据集中快速找到与查询最为接近的项。同时,向量知识库不受传统关系型数

据库模式的限制,提供了更大的灵活性。它们能够处理多种类型的数据,包括文本、图像、音频和电影等。

那作业怎么写?

我怎么知道啊,下周还要打分!

纸巾,湿纸巾,消毒湿巾,干巴的沾水洗脸巾,牙膏牙刷,一小瓶漱口水,洗发水小样,沐浴露一小瓶,洗面奶一小个,面霜,仨面膜,防晒霜。

拖鞋,一次性纸杯几个,洗完澡的毛巾。

自我评价

-学习能力:对于新的领域保持好奇心,具有较强的学习能力,能够快速掌握新的知识。

-沟通能力:沟通能力强,能够掌握沟通技巧,善于维护各方关系并进行跨部门协作。

基于大语言模型(LLM)的英文文献解析

-选取大量专业领域的英文文献数据进行处理,使用Python对数据进行分模块读取。

-特征提取,将所有元素转换为向量,构建专业领域的向量知识库。

-通过chatbot模式,进行模型优化,检验模型是否能调用专业领域向量数据库回答专

业性问题和时效性问题的有效性。

总之,我们的贡献如下:我们将多模态的检索增强生成技术确立为随着近来词法管理领域的进步而出现的一组重要方法。对于常见的模式,我们对研究论文进行了深入评述,分析了它们之间的内在联系和共同面临的挑战。我们对未来的发展方向进行了翔实的分析,其中可能包含应对当前许多挑战的有前途的解决方案。2定义和背景为了更好地了解激发多模态检索增强的现状和进展,我们首先定义并讨论了两个关键概念的背景:多模态学习和检索增强生成(RAG)。2.1多模态学习多模态学习是指学习不同模态数据的统一表征。它的目的是提取互补信息,以促进合成任务的完成(Baltrusaitis et al.Baltrusaitis et al., 2018; Gao et al., 2020). 在这项调查中,我们包括了所有格式不同于自然语言的模式,其中包括图像、代码、结构化知识(如......例如 表、知识图谱)、音频和视频。

3多模态检索-增强生成每种模式都有不同的检索和合成程序、目标任务和挑战。因此,我们按图像、代码、结构化知识、音频和视频等模式对相关方法进行分组讨论。3.1图像预训练模型的最新进展为一般图像-文本多模态模型提供了启示。

然而,这些模型需要大量的计算资源进行预训练,并需要大量的模型参数--因为它们需要记忆大量的世界知识。更关键的是,它们无法有效处理新知识或领域外知识。为此,人们提出了多种检索增强方法,以更好地整合图像和文本文档中的外部知识。在一般的文本生成任务中,图像检索也可以通过扩展文本生成语境来提高生成质量,从而增加 "想象力"。视觉问题解答(VQA) 为了解决开放域的 VQA 问题,RA-VQA (Lin 和 Byrne, 2022b) 通过对检索到的文档进行近似边际化预测,联合训练文档检索器和答案生成模块。它首先利用现有的对象检测、图像标题和光学字符识别(OCR)工具将目标图像转换为文本数据。然后,它执行密集段落检索(DPR)。

也将 LLM 视为隐式知识库,并从 GPT-3 中提取相关隐式信息。即插即用 利用 根据初始问题定位相关部分。然后,它对检索到的图像补丁执行图像标题处理,以获取增强上下文。除了纯文本增强上 同时检索文本和图像数据,并将图像作为视觉标记。RAMM(Yuan et al., 2023) 检索类似的生物医学图像和标题,并通过不同的网络对其进行编码。图像标题 生成多种风格的标题、 周和龙 (2023)在生成标题前使用了一种风格感知视觉编码器来检索图像内容。除了对视觉信息进行简单的编码外,Cho 等人还使用了视觉编码器、 Cho et al. (2022) 进一步使用图像-文本对之间的多模态相似性作为奖励函数来训练更精细的字幕模型。除了检索图像元素外、

这章没有结束,请点击下一页继续阅读!

上一章目 录下一页存书签
站内强推我在精神病院学斩神 全职法师 年代1960:穿越南锣鼓巷, 大奉打更人 四合院:垂钓诸天万物 天渊 官场:救了女领导后,我一路飞升 重生60带空间 健身教练! 龙族5悼亡者的归来(龙族Ⅴ:悼亡者的归来) 穿成孩子妈,奋斗成赢家 第九特区 全球高考 退婚后,高冷女帝后悔了 重生80靠赶山狩猎实现财富自由 重生1958:发家致富从南锣鼓巷开始 长生天阙 四合院:从51年开始 官道:从殡仪馆平步青云 异兽迷城 
经典收藏疯批小师叔她五行缺德 兽世种田:反派崽崽超粘人 天官赐福 重生另嫁小叔,夫妻联手虐渣 带房穿越,我教全国百姓种田 搬空仇家库房后,携物资度过灾年 四合院:火红年代小地主 逃荒,我全家都是重生的 位面商城:我靠囤货成了团宠 穿越有空间,逃荒路上连救三崽 快穿:疯批宿主她铁石心肠! 最强升级系统 穿越后,从人嫌狗厌开始逆袭 为妾的职业操守 我在古代赚钱养家那些年 一品容华 非正常音乐家 开局就送七个太监 盛世春 我去古代考科举 
最近更新清穿成为四阿哥嫡次子 重生之我在修真界搞内卷 如果让我来修仙 强绾君心,得到高僧也得日日宠我 三岁宿主决定给自己养个皇帝爹 异域纵横盲人按摩师成妖帝 重回吾妻十二那年 穿成最惨休妻妇,我要发财又暴富 被害死后,我转生了 男尊女贵之夫君求临门 长姐换亲,随便!我有空间穿古今 我一躺平赘婿,怎么封狼居胥了? 异世之珏 穿越之倾世宠妃 女尊之天降温柔妻主 我在原始部落混的风生水起 枯井通古今,囤货投喂美强惨战王 穿越战国之幻爱传奇 抄家?绝艳替嫁搬空国库去流放! 你们搞错了,女配我都算不上 
离语 semaphore - 离语txt下载 - 离语最新章节 - 离语全文阅读 - 好看的古言小说