离语

semaphore

首页 >> 离语 >> 离语最新章节(目录)
大家在看疯批小师叔她五行缺德 兽世种田:反派崽崽超粘人 重生之将门毒后 真千金断绝关系后,侯府后悔莫及 名门第一儿媳 当众休夫!我搬空皇帝库房去造反 戏精女配:穿书后全员偷听我心声 综影视:我在小世界里积功德 玄学王妃算卦灵,禁欲残王宠上瘾 外室进府?重生三媒六聘改嫁首辅 
离语 semaphore - 离语全文阅读 - 离语txt下载 - 离语最新章节 - 好看的古言小说

第275章 写完了~

上一章书 页下一页阅读记录

2.3 检索增强生成技术

RAG(Retrieval-Augmented Generation)技术是一种结合了信息检索(Retrieval)和文本生

成(Generation)的自然语言处理(NLP)方法。核心思想是将传统的检索技术与现代的自然语言

生成技术相结合,以提高文本生成的准确性和相关性。它旨在通过从外部知识库中检索相关信息来

辅助大型语言模型(如 GPT 系列)生成更准确、可靠的回答。

在 RAG 技术中,整个过程主要分为三个步骤如图 2.2 所示:索引( Indexing)、检索

(Retrieval)和生成(Generation)。首先,索引步骤是将大量的文档或数据集合进行预处理,将

其分割成较小的块(chunk)并进行编码,然后存储在向量数据库中。这个过程的关键在于将非结

构化的文本数据转化为结构化的向量表示,以便于后续的检索和生成步骤。接下来是检索步骤,它

根据输入的查询或问题,从向量数据库中检索出与查询最相关的前 k 个 chunk。这一步依赖于高效

的语义相似度计算方法,以确保检索到的 chunk 与查询具有高度的相关性。最后是生成步骤,它将

原始查询和检索到的 chunk 一起输入到预训练的 Transformer 模型(如 GPT 或 BERT)中,生成最

终的答案或文本。这个模型结合了原始查询的语义信息和检索到的相关上下文,以生成准确、连贯

且相关的文本。

RAG 的概念和初步实现是由 Douwe Kiela、Patrick Lewis 和 Ethan Perez 等人在 2020 年首次

提出的。他们在论文《Retrieval-augmented generation for knowledge-intensive nlp tasks》

中详细介绍了 RAG 的原理和应用,随后谷歌等搜索引擎公司已经开始探索如何将 RAG 技术应用到搜

索结果的生成中,以提高搜索结果的准确性和相关性。在医疗领域,RAG 技术可以帮助医生快速检

索医学知识,生成准确的诊断建议和治疗方案。

2.4 文本相似度计算

文本相似度计算是自然语言处理(NLP)领域的一个重要研究方向,它旨在衡量两个或多个文

本之间的相似程度。文本相似度计算的原理基于两个主要概念:共性和差异。共性指的是两个文本

之间共同拥有的信息或特征,而差异则是指它们之间的不同之处。当两个文本的共性越大、差异越

小,它们之间的相似度就越高。

文本相似度计算可以根据不同的分类标准进行分类。首先基于统计的方法分类,这种方法主要

关注文本中词语的出现频率和分布,通过统计信息来计算文本之间的相似度。常见的基于统计的方

法有余弦相似度、Jaccard 相似度等。其次是基于语义的方法分类,这种方法试图理解文本的含义

和上下文,通过比较文本的语义信息来计算相似度。常见的基于语义的方法有基于词向量的方法

(如 Word2Vec、GloVe 等)和基于主题模型的方法(如 LDA、PLSA 等)。最后是基于机器学习的方

法分类,这种方法利用机器学习算法来训练模型,通过模型来预测文本之间的相似度。常见的基于

机器学习的方法有支持向量机(SVM)、神经网络等。

目前,在国内外,文本相似度计算已经取得了丰富的成果。国内方面,清华大学等机构的研究

者提出了基于深度学习的文本相似度计算方法,利用神经网络模型来捕捉文本的深层语义信息,实

现了较高的相似度计算精度。江苏师范大学的研究者提出了利用《新华字典》构建向量空间来做中

文文本语义相似度分析的方法,该方法在中文文本相似度计算方面取得了显着的效果。放眼国外,

Google 的研究者提出了 Word2Vec 算法,该算法将词语表示为高维向量空间中的点,通过计算点之

间的距离来衡量词语之间的相似度。Word2Vec 算法在文本相似度计算领域具有广泛的影响。斯坦

福大学等机构的研究者提出了 BERT 模型,该模型通过大量的无监督学习来捕捉文本的上下文信

息,可以实现高精度的文本相似度计算。BERT 模型在多项自然语言处理任务中均取得了优异的表

现。

2.5 本章小结

本章主要介绍了本项目中使用的四种关键技术与模型。这些技术主要基于大型语言模型,并且

这章没有结束,请点击下一页继续阅读!

上一章目 录下一页存书签
站内强推剑来 我在精神病院学斩神 我不是戏神 全职法师 官场:被贬后,我强大身世曝光 仙逆 十日终焉 重生之将门毒后 年代1960:穿越南锣鼓巷, 十里芳菲 我的极品28岁老板娘 轮回乐园 春山喧 青云官路:从小职员到封疆大吏 遮天 第九特区 官场之绝对权力 蛊真人 凡人修仙:我有随身灵田 斗罗大陆4终极斗罗 
经典收藏疯批小师叔她五行缺德 我在异世封神 魏晋干饭人 兽世种田:反派崽崽超粘人 重生之将门毒后 洛九针 重回1982小渔村 重生后,我成了奸臣黑月光 灯花笑 我在修仙界搞内卷 重生另嫁小叔,夫妻联手虐渣 继后 皇叔借点功德,王妃把符画猛了 修真界无数天骄,唯有小师妹沙雕 重生1983:从进山打猎开始逆袭 带空间嫁村霸相公,被婆家团宠了 签到三年,成为全球特战之父 和离再高嫁,将门毒妃她超飒 穿越古代,有空间 挽春娇 
最近更新宠妃这职业,必须卷起来 姐妹先嫁我后嫁,她嫁儿子我嫁爸 太子妃掐指一算,疯批殿下心惊胆战 帝娇 快穿之带着直播间去古代 买来的禁欲夫君是太子 青云焚骨 穿越大乾,我靠打猎养活妻女 穿越古代,有空间 时光变迁我选择爱你 魔女入仙门卧底,就这个攻略爽! 赎罪营:杀敌百万,我带女帝平天下 重生之我怎么又又重生了 穿越之我的太子相公 荒年恶妇开了挂,逆袭成全县首富 穿越之瞎子配瘫子 六姑娘一言不合就心狠手辣 天灾年,小娘子有亿万物资建桃源 无意惹清风 这个皇子有点凶 
离语 semaphore - 离语txt下载 - 离语最新章节 - 离语全文阅读 - 好看的古言小说